FOLIO OF THE McCARTHY QUADRANGLE, ALASKA
DEPARTMENT OF THE INTERIOR

MAP MF-773N
UNITED STATES GEOLOGICAL SURVEY SHEET 1 OF 3
ALBERT, STEELE-INTERPRETATION OF LANDSAT IMAGERY
Relatdivwve i n@cyd e*n ¢ .e (frequency)
Percentage Mines = /AR S /o O O U I L TV O W W ET
dof 5 Deposits Occurrences Prospects Mines and Domains g S ,
quadrangle pEgS TS T ¢ . )
area 5 A "
»
100 1.0 1.0 1.0 1:0 1.0 I. within the McCarthy quadrangle
. POINT HOPEq | colzille s || SCALE 1

35 1.6 Al 1.8 2.3 1.8 IT. within 1 km of type A linear \ |olo CIJ 200 4<I)o KILOMETERS
features & % \

23 3.1 3451 3ol 3.5 32 III. within 1 km of type B linear / |
features (potential fault extensions) / oot e ;
or mapped faults o £ s S, -

1l 6.9 5149 Tt 9.1 Tn 7 IV. within the six favorable rock types //,/

i ’/" LIVENGOOD Gr.w"
10 4.3 3.8 4.5 6.0 4.7 V. where domains II and III are coincident - i Vsl .
4 105 62 128 20.0 T4:.0 VI. where domains II and IV are coincident ( e :r’\ |
% HINES CREEK“STRAND=__ 1> Vi TOTSCHUNDA FAULT
> : ’ S
& 15.0 14.1 ] 5l 183 15.7 VII. where domains III and IV are coincident = i suns
¢ 5 "/
2 17.4 11.8 20.4 30.0 22:0 VIII. where domains II, III, and IV are ol Py o
coincident A 4 o
s X .
BETHE. BORDER RANGES FAU
Table 1.—Relative incidence of the various types of mineral deposits within the domains discussed in the text ' qge" m
¢
S e :
DILLINGHAM KAYAK |I.
G ) ’
Y ATTON BAY FAULT - o / OF ALASKA
Deposits Occurrences | Prospects | Mines |Mines and & gy themmaRegE ¥ o
Prospects Domains Skoniax 1
s %40 \
167=a 76 76 15 93 A=total number I. within the McCarthy quadrangle ; N A F i
2 '
100% 46% 46% 9% 54% A/a=% of total number boc: ot 3 - : e ‘ 3
i i i a i ALEUTIAN
.91=b 32 47 12 59 B=total number II. within 1 km of type A linear mwngg sz Lo © 23
AN
54% 19% 28% 7% 35% B/a=% of 'a' features i _ - : e | ‘T'QB | :
4 AT R~ o e Oy N Y O e 3 (i Nt T
42% 62% 80% 65% B/A=% of each type of mineral deposit 5 _ _ o
54% / P _ Figure 1.—Index map of Alaska showing the approximate location of the McCarthy quadrangle, and linear, geologic, and geographic features
100% 35% 52% 13% 65% B/b=% of 'b' for each type of mineral deposit outside the quadrangle that are described in the text.
120 =¢ 54 55 12 67 C=total number ITI. within 1 km of type B linear
72% 32% 33% 7% 40% ¢/a=% of 'a" features (potential fault
72% 71% 72% 80% 74% C/A=% of each type of mineral deposit extensions) or mapped faults 3 ; .
R e e S o R e L R S N SRR L s e O il SN A0 S B e S
100% 45% 45% 10% 55% C/c=% of 'c' for each type of mineral deposit
2 250 o i S
126=d 49 62 15 Tl D=total number IV. within the six favorable rock
Tiagan s Ll R P AR (o e RN SISO | - s Mo P E SN LI, S0 = S (W RITIEL ot L | =
75%° 29% 37% 9% 46% D/a=% of 'a' types @
. —
75% 64% 82% 100% 85% D/A=% of each type of mineral deposit e + B
o
: 2
100% 39% 49% 12% 61% D/d=% of 'd' for each type of mineral deposit X 00 5 e DR | — e 5
72=e 29 34 9 43 E=total number V. where domains II and III are 50 III l | ”__ I I I l | l =
43% 17% 20% 5% 26% E/a=% of 'a’ coincident 4 | [l lI THBEEE, S s '| lll . } mllll i e l
: ; 90° 60° 30° 0° 30° 60° 90°
43% 38% 45% 60% 47% E/A=% of each type of mineral deposit Figure 2.—Histogram of trends and cumulative lengths of type A linear features observed on Landsat
45 100% 40% 47% 13% 60% E/e=% of 'e' for each type of mineral deposit imagery of the McCarthy quadrangle.
70=£f 19 39 12 51 F=total number VI. where domains II and IV are
42% 11% 23% 7% 31% F/a=% of 'a' coincident
42% 25% 51% 80% 56% F/A=% of each type of mineral deposit : "
100% 27% 56% 17% 73% F/f=% of 'f' for each type of mineral deposit
100=g 43 46 ix- 57 G=total number VII. where domains III and IV are
5 60% 26% 28% 7% 34% G/a=% of 'a' coincident
60% 57% 61% 73% 63% G/A=% of each type of mineral deposit
100% 43% 46% 11% 57% G/g=% of 'g' for each type of mineral deposit
58=h 18 il 9 40 H=total number VIII. where domains II, III and
i ] 88°
35% 11% 19% 2 24% H/a=% of 'a’ IV are ceincident i E
. . soggku i 403 KM 200 KM 0 200 KM 400 KM 600 KM
35% 24% 41% 69% 44% H/A=% of each type of mineral deposit _ ‘
Figure 3.—Compass rose of trends and cumulative lengths of type A linear features observed on
100% 31% 53% 16% 69% H/h=% of 'h' for each type of mineral deposit Landsat imagery of the McCarthy quadrangle.
t ' Table 2.—Statistical analysis of the various types of mineral deposits within the domains discussed in the text
14 4° 1410
B2®
EXPLANATION FOR GENERALIZED GEOLOGIC MAP
(GEOLOGY GENERALIZED FROM MacKEVETT, 1976)
i CORRELATION OF MAP UNITS
SURFICIAL DEPOSITS %
; zvx o o' N \‘--.
ST ss | 25
SOUTH OF BORDER RANGES FAULT BETWEEN BORDER RANGES FAULT AND TOTSCHUNDA FAULT SYSTEM NORTH OF TOTSCHUNDA FAULT s g 3 =~ 5 E 5 gg e e \ Q‘ \
METAMORPHIC INTRUSIVE SEDIMENTARY, VOLCANIC, INTRUSIVE SEDIMENTARY AND INTRUSIVE E © e |2 s So s g By - \
ROCKS ROCKS AND METAMORPHIC ROCKS ROCKS VOLCANIC ROCKS ROCKS < a o o gg - = § 9 ~|9ke \ '
a oo - o | @ ) o :’ : = 5 g 5
QTw QTtw i o a Wi E E g?% ol :ES:“ NEV \ ‘\ '
:vgﬁ b 2 E > |[Heo Cl8lel A ing 1w n o Ny
e e > A el il A LS B A A HE A b e
z 398 %3 N EHHHEE R R \
™o L £ tgis : £ = ElFssnlzilslblaiaalave -
UNCONFORMITY E‘ = < = R =
g UNCONFORMITY = 1 Hasen Creek Formation Ph 70 ’ \
2 A g o ‘ N\ .
: * 2 Monzonitic-granitic complex Pm 100 k o~ ‘
K L CRETACEOUS }CRETACEOUS 3 Kaskawulsh Group of Kindle (1953) Pzk 100 - v ‘v "
- Ke CRETACEOQOUS S SR 3
Kdv UNCONFORMITY | AERE o 4 Monzonitic-g iti hpl : :P 1(;((: : ‘ \
= }JURASSIC s AND JURASSIC 9 5 :t‘;i:i g:gz]’:’ matamorphose i 4
JURASSIC i % Chitistone and Nizina Limestones Ren 25
7 [ = i e Ry iy L
. 6 Wrangell Lava QTw 100
B B RSie “ TRIGSHE “ TRIASSIC onzon c-gran c com ex m
= b e -} -]- ! gredomiiintiy Ui;:r Creziceous iu ?g
UNCONFORMITY UNCONFORMITY 7 sedimentary rocks ‘
Pre 7 PERAN AR o Station Creek Formation PPsc 100
- AND PPs PENNSYLVANIAN 8 9 Hypabyssal rocks { Th 100
PPsm PENNSYLVANIAN Pm his 8 0 Wil ava QTw 70
o y & 7 Pgo }PENNSYLVAN[AN — Station Creek Formation PPsc 30
v i EADE RN TR g 11 Granodiorite Tg 100
]" DEVONIAN(?) N 12 Wrangell Lava QTw 100
13 Predominantly Upper Cretaceous Ku 100
sedimentary rocks
14 Chitina Valley batholith Je 100 211 X 610
15 Wrangell Lava " 3Tw zg
Undivided Jurassic marine sedimentary rocks s SCAL E
redominan er retaceous u @
e . :edimenziiyuzzcksc & - o
‘ . : v ] DESCRIPTION OF MAP UNITS RO s - 55
: s r f v ) ; : : e gl ey {; i =4 : % 5o * 3 . 5 \ g e - s . : - FRRNE e . gcc:"?y F:ll-;a::’;;n s gm gg * : i L AT
10 500 ‘1) = R / . i ; . _ S : : : P ; R : _ o e : - ; o redominantl er Cretaceous
| ¥ : 10 UNCONSOLIDATED SEDIMENTARY DEPOSITS (Quat sedimentary ro s : . :
s emary) 18 Chitina Valley batholith Jec 100
SOUTH OF BORDER RANGES FAULT 19 |Hypabyssal rocks Th 35 4 X
) METAMORPHIC ROCKS Predominantly Upper Cretaceous Ku 25
G000 Low:§dé::::::§u:°;t:men:a:y rocks K1 20 E X P L A N A Tl O N
4GO000 E VALDEZ GROUP (Cretaceous and Jurassic?) MeCarthy Peragtine saek e
” Chitistone and Nizina Limestones Ren 10
INTRUSIVE ROCKS 20 Hypabyssal rocks Th 100 X —80\
: INTRUSIVE ROCKS (Eocene?) Typically, foliated granodiorite and tonalite 21 McCarthy Formation JRm 50 |1 X BOUG u ER GRA V‘ b Y GO NT 0 U R 1] l N MIL L |G AL S IN T E RVA I= iO MIL L V/GALS.
BN i o v Interpretation by N. R. D. Albert and W. C. Steele, 1976 BETWEEN BORDER RANGES FAULT AND TOTSCHUNDA FAULT SYSTEM L sen 5
' SEDIMENTARY, VOLCANIC, AND METAMORPHIC ROCKS 22 [Nikolai Creenscone i EREE X X
= Computer processing of CCT’'s by PatS. Chavez, Jr. Teresa E. = s Ui WA AL e ¢ . stone an zin MAJOR LINEAR FEATURE T ,
S SCALE 1:250000 a2 Grow, and Linda Sowers, U.S. Geological Survey, Flagstaff, s subaerial(S::?I:;;::;{ya:ockgr;faa’l Srela T T NN D e e S [ e RO 44 3 i : H ! HAT CORRELATES WITH GRAVITY ANOMALY
ST S BHLERPRETAT LON - . 144° 141° Arizona, 1976 |I| MARINE SEDIMENTARY ROCKS (Upper and Lower Cretaceous) Includes MacColl Ridge, Chititu, Moonshine Creek, I +n 5 LETTERED FEATURES ARE DESCRIB ED IN TEXT
2 5 0 5 Bk P " lati fo thi . Sitihed Schulze, and Kennicott Formations, and unnamed Lower Cretaceous rocks o s T s T
: I I 10 15 20 25 MILES ackground information relating to this map is published as ey i ; angell Lava ‘ .
B AREAS DEsoEE M . e i S £ : l GULK U.S. Geological Survey Circular 739, available free of charge "““"ﬁéi?iﬁ"iﬁﬁaﬁ?ﬁﬁ,‘%22?31%2231I;éiiilf’a,‘.ﬁﬂ?ﬂﬁa’?ﬁﬁ e lbgiell sl e 23, |Wrecgel] Leve g Figure 4.—Bouguer gravity anomaly map of the McCarthy quadrangle (Barnes, 1976) with major type A linear features
APPROXIMATE MEAN ANA NABESNA Surve Reston, Va. 22092 26 Predominantly Upper Cretaceous Ku 60 1 .
NUMBERED AREAS DESCRIBED B the U S Gaslasieal v, ’
1 S anon 1975 : -m NIKOLAI GREENSTONE (Upper and (or) Middle Triassic) Mainly subaerial tholeiitic basalt; includes subordinate b2 g Th 40 ghsaryad oo Candsat imegery,
IN TABL Fe3 . & 0 5 10 15 20 25 KILOMETERS 52¢ .< 62° ' Chitistone Limestone north of Totschunda fault system ALl i o 100
= } : 3 i o = % Al k i 1 s SKOLAI GROUP (Permian and P i A T o f oo N
- ... b ’ ! A d i = ocks
CIRCULAR FEATURES. DOTTED Uai b < T For E'; ale b vy as 3 a ]?1 S ; ribution Lo 5‘052 ?: zgrth::rs!:zr:a;;::)ofsqmggggg}:clu es a few scattered remnants of Middle Triassic sedi 28 :;::;y:::;a::::: Sedieenrary Pock ﬁ 355) 422 X
' na a e a o c
w 2 WHERE UNCERTAIN 2 . ETREEIRE D CONTOUR |NTERVAL 200 FEET e il QUADRANGLE LOCATION Section s U . S . G’eo (o) gl ca = urVey ) METAMOR:;{OSED aKOLAI Ggoty{s (Psrmian and Pennsylvanian) Includes a few small outcrops of serpentinized ultra- ::é:ithyvl?illmirliu:h lith j’ﬁm ig
° FEATURES ARE DESCRIBED IN DATUM IS MEAN SEA LEVEL P 310 FirSt Avenue 3 Falrb ank.S : AK - mafic rocks near Border Ranges fault g:i::sz::ka::r::;x: Fat o ;:n }8
. . . | Pk | KASKAWULSH GROUP OF KINDLE (1953) (Devonian?) ARl il s - o
. SORDRIA L | S R 99701 and Branch of Distribution, TR . | ikgaat ehuuntone: a 5
| 29 Chitina Valley batholith Jc 50 il 1S X
el Rk FER T RE g o nier 28 Sk 14;1 121 U' S o Ge01ogica‘1 Survey H BOX 252’86 Th FELSIC HYPABYSSAL ROCKS (Pliocene) Mainly porphyritic dacite :ikotai lereenzk:one ?: 255)
= 3 ypabyssal rocks 4
J 5 C L AT : ; A e E i e TRRe Fe de r a]. C [0 t er ) DenVe r ) C 0 8 0 2 2 5 Tg GRANODIORITE (Pliocene) Unfoliated granodiorite with local mafic border facies 30 Nikolai Greenstone '52 :g 13(7 X
A R E D E S C R I B E D I N T E XT de CHITINA VALLEY BATHOLITH (Jurassic) Mainly foliated quartz monzodiorite, granodiorite, and tonalite gﬁi:iﬁ:in?:::tﬁ:ma Limestones Ren -
3 X
L i i LT S ' 2. 1
' : : i P MONZONITIC-GRANITIC i i i rangell Lava QTw 100 X
BACP“;ROLHQD INFW)RPVYTION transparencies were e photographically Composed RESULTS Spacing of the N. 72° W. and N. 150 B orthogonal features. Thus, mineral deposits are 1.6 times more area of the quadrangle yet cgntalns appr9x1matg¥y‘§0 m b gt K COMPLEX (Pennsylvanian) Mainly nonfoliated quartz monzonite and granite, local mafic ;2 :ﬂ;n?;;msm“ & = ]
ib b and enlax.'ged, resulting in color transparencies and set of type A linear featufes is considerably less common per unit area within 1 km of type A linear percent (100) of the kn?wn mlneral deposn.t;s. Within RO SR : . . '
Landsat 1 (formerly ERTS-1) was launche y the color prints at 1:250,000 scale. 2 , For this study. the most useful application of regular than the other sets, although there is some features than in the overall quadrangle (table 1). this area, 63 percent (!7) of all known mines and Table 3.—Correlation of iron-oxide colored areas observed on Landsat
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0.7-0.8 um; band 7, 0.8-1.1 wm. Measurements are not only large spectral differences within the image; are responsible for twg types of linear features -- intrusive rocks of the Wrangell Msintains £6 the I i Gnown dineral deposits, the bhek
transmitted to receiving stations on the ground, and but also very subtle differences not usually enhanced types A and B. Type A linear features represent a north (MacKevett, 1976a). types listed previously, and type A linear features Circular Features
the gigzdaig ;?Eiiggzgt}% dlgltlgedﬁ calibrated, and bylother methods. The rssulting image shows gradual worldwide regmatic shear pattern or planetary fracture Linear feature B, with an approximate N. 45° W. are very good (tables 1 and 2) Even though the area £ b h cad? Ay
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Overlap is 10 percent with preceding and following

1973 by the U.S. Department of Agriculture Soil
Conservation Service, using band 7 images generated
without computer enhancement. Study of this mosaic
was conducted at a scale of 1:1,000,000, and the
results transcribed to fit a standard 1:250,000-scale
UTM projection map of the McCarthy quadrangle. Because
of the synoptic perspective and low sun angle, the
mosaic was most useful for identifying linear and

circular features and relating them to regional linear
and circular patterns. Tonal variations signifying
differences in ground color within the quadrangle are
not detectable because the area is completely covered
by snow on the Alaska mosaic.

On the basis of minimal snow and cloud cover,
two Landsat 1 images were selected for computer
enhancement: 1350-20223, taken July 8, 1973; and
1709-20090, taken July 2, 1974. 1In addition to
identifying other linear and circular features not
detected on the Landsat photomosaic, computer-enhanced
imagery is generally most useful for identifying
subtle surficial reflectance variations due to
differences in vegetation, rock types, soil, and other
variables.

CCT's for these two Landsat scenes were processed
by the image processing facility of the U.S. Geological
Survey, Flagstaff, Ariz. Computer-enhancement
techniques were applied using a_Digital Equipment
Corporation, Computer PDP 11/451, yielding computer-
enhanced CCT's, which were then used in an Optronics
Company, Photowrite 1500 System to generate black and
white film transparencies. The black and white

images and ranges from about 14 percent sidelap at the at approximately 1:1,600,000 scale (two different regional tectonics. intersecting the Denali fault system near its : McCarth uadrangle is approximately 120 km in diameter
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latitude. - ) transparencies are then photographically registered Hobbs (1911) was one of the first workers to part of the Hines Creek strand. In the McCarthy of 70) of all the known mineral deposits within this part of the quadrangle, are primarily associated with ) 3005, y . , : REFERENCES CITED
Ana%y31s of Landsat images can be made by various and optically filtered to generate a color transparency discuss rectangular sets of fracture patterns and to quadrangle, this linear feature partially corresponds area is either prospects or mines. Consequently the Paleozoic Kaskawulsh Group of Kindle (1953). 41ffeyent1ate'mora1nal materials, and, in a few places, MAPPED FAULT
methods including 1) the visual interpretation of at the same scale. The color combinations used for relate them on a worldwide basis. He noticed that to the trace of the Totschunda fault svstem. : : : s Circular feature V, in particular, follows much of the identify bedding. The determination of the economic ’
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lThe use of trade names is for descriptive purposes only and does
not constitute an endorsement of these products by the U.S.
Geological Survey.

A black and white image for each individually stretched
band is then produced as a film positive (transparency)

filtered using green for band 4, red for band 5, and
blue for the synthetic blue band. The final product
simulates true color and accentuates subtle color
differences (P.A.0. no. E-457-57CT). :

The third type of computer-enhanced product is
a color ratioed image. Ratioing involves dividing
the DN values of pixels in one spectral band by the
DN values of corresponding pixels in another spectral .
band. The resulting image tends to eliminate variations
in color of a given material due to topographic effects
or shadows. On the other hand, differences in albedo
are reduced, and different materials, easily discrimi-
nated on a standard photographic image, may become
visually identical or similar. Histograms of ratioed
images tend to have a narrow range of DN values. As
a result, this narrow range of DN values is ''computer-
stretched" to fill the entire dynamic range of values,
giving greater variations in color. The type of stretch
is dependent upon the brightness of the area of inter-
est. Effects of noise and atmosphere are greatly
enhanced by ratioing, requiring extra care in the
early computer processing stages. For this study the
ratios are as follows: band®/4, band 7/4, band 6/7.
The quotients were converted into black and white
transparencies that were combined into the. final color

composite product, using red for 7/4, green for 6/7,
and blue for 5/4 (P.A.0. no. E-458-57CT).

2Computer—enhanced color products generated by the U.S. Geological

Survey, Flagstaff, Ariz., are available at nominal cost from:
EROS Data Center, Sioux Falls, South Dakota, 57198. Orders
should include P.A.O. (Public Affairs Office) numbers given
elsewhere in this text. ‘

linear features are related to faults, folds and
fractures that are probably the result of local and

stresses, divides the Earth's crust into blocks of
different size and importance. According to Shul'ts,
fractures, along with faults and folds, can also be
related to local and regional tectonic stresses, which
are generally subordinate to the network of planetary
fracturing and controlled by factors of their own.

For the most part, Hobbs, Vening Meinesz, Sonder,
and Shul'ts have found two orthogonal sets of planetary
fractures or regmatic shear directions, one set
northwest and northeast, and the other set north and
east. In the McCarthy quadrangle, however, we found
three orthogonal sets of type A linear features,
similar to those observed in the Nabesna quadrangle
(Albert, 1975) (figs. 2 and 3). The most prominent
set trends approximately N. 47° W. and N. 48° E.,
while the other sets trend approximately north and
N SSEEFE —and N 72 =illzwand N, 15° E. Sonly the
third set appears to have a different orientation from
the common regmatic shear or planetary fracture
pattern.

Most of the observed type A linear features
corresponding to these three orthogonal sets range
from several tens to several hundreds of kilometres
long. The more north-trending type A linear features
are significantly less continuous and more poorly
developed than those with other orientations.

Northwest-, northeast-, and east-trending type A
linear features exhibit spatial periodicity. Parallel
linear features with any of these trends tend to be
spaced approximately 30-35 km apart. Applying Vogt's
(1974) method for estimating crustal thickness from
the spacing of volcanoes and major fractures, the
spacing of type A linear features in the Wrangell
Mountains, within the McCarthy quadrangle, indicates
a crustal thickness of approximately 30-35 km. This
thickness is somewhat less than gravimetrically
?erived estimates of approximately 45 km by Barnes
1976). .

620 km from the Tanana River, west of Fairbanks, to
the southwest corner of Yukon Territory, Canada,

much deeper magnetic regimes, show a fair correlation
with type A linear features, suggesting that these
linear features are deep seated.

The type A linear features correlate well with
Bouguer gravity anomalies (Barnes, 1976) (fig. 4).

One of the most significant gravity features is the
strong gradient that extends from the northwest

corner to the southeast corner of the quadrangle

and is deflected eastward in the central part of the
quadrangle. We believe that this gravity trend, with
its eastward deflection, is described by northwest-
trending linear features E, F, I, and by east-trending
linear features G and H. Most of the known copper
deposits in the McCarthy quadrangle are within this
zone.

Since the gravity data are primarily regional
in scope, they mostly reflect deep, regional features,
such as changes in type and thickness of crust. We
believe that the type A linear features correlate more
closely with the gravity data than with the aeromagnetic
data and thus infer that at least some are deep,
fundamental features that probably penetrate the
erigl.

The correspondence of known mineral deposits to
type A linear features in the McCarthy quadrangle is
very good (tables 1 and 2). There is a total of 167
known mineral deposits, excluding placers, which have
been subdivided into three groups: 1) mines,

2) prospects, and 3) occurrences (MacKevett and Cobb,
1972; MacKevett, 1976b). Of the 167 known mineral
deposits, 91 (54 percent) are within 1 km of a type
A linear feature. Also, of these 167 deposits, 91
are prospects or mines, 59 (65 percent) of which are
within 1 km of a linear feature. Measurements using
a digital planimeter show that only 35 percent of the
quadrangle is located within 1 km of type A linear

linear feature is only 4 percent of the quadrangle,
42 percent (70) of all nonplacer type known mineral

shorter linear features appear to be related to more
recent tectonic events, whereas longer linear features
(planetary or regmatic fractures) are older structures.
The type B linear features that we plotted as
potential extensions of faults mapped by MacKevett
(1976a) (fig. 6) differ from the linear features

(type A) that are related to the regmatic shear pattern.

Whether or not the linear features actually are
extensions of mapped faults is uncertain. These linear

features have not been observed in the field (MacKevett,

oral commun., 1975) and may be visible only on high-
altitude images. '

Numerous mineral deposits known in the quadrangle
are closely related to faults and fractures (MacKevett,
written commun., 1976), many of which have not been
mapped by MacKevett (1976a). Since we believe that
these type B linear features are possible faults, the
correlation of known mineral deposits with these
features has been extended to include faults mapped
by MacKevett.

Statistical correlations of known mineral deposits
with potential fault extensions or mapped faults are
good (tables land2).Although only 23 percent of the

quadrangle is within 1 km of a potential fault extension

or mapped fault, 72 percent (121) of all nonplacer
mineral deposits in the quadrangle is within this
area. Also, 74 percent (67) of all prospects and
mines is within 1 km of a potential fault extension
or fault. Thus, mineral deposits are 3.1 times more
common, and mines and prospects are 3.2 times more
common, per unit area within 1 km of a potential
fault extension or fault, than in the overall
quadrangle. i

The area occupied by the six mineralogically
favorable rock types that is within 1 km of a potential
fault extension or fault is only 4 percent of the total

are more than 5 km in diameter were plotted in this
study. The largest circular feature observed in the

coloration have been observed in the field (Robinson
and MacKevett, oral commun., 1976), but because of
heavy snow and cloud cover in the imagery, we were
unable to detect all of these areas.

Many of the observed iron-oxide colored areas are
not confined to one rock type-- individual areas can
contain as many as six rock types (table 3). The most
common associations are with Tertiary hypabyssal rocks,
the Wrangell Lava, the Nikolai Greenstone, and the
monzonitic-granitic complex.

The correlation between observed iron-oxide colored

areas and known mineral deposits is fair. Although
these areas occupy only 5 percent of the total area of
the quadrangle, approximately 28 percent (47) of all
mineral deposits and 36 percent (33) of all prospects
and mines are within them. Areas 28, 29, and 30 have
the strongest correlations between mineral deposits
and iron-oxide coloration (table 3).

Correlations between the observed iron-oxide
colored areas and aeromagnetic data is poor. Only
areas 28, 29, and 30 appear to have any relation to
aeromagnetic anomalies. These areas are close to
significant magnetic highs that are attributed by Case
and MacKevett (1976) to the Nikolai Greenstone and the
Chitina Valley batholith.

Only one notable correlation between observed
iron-oxide colored areas and gravity data is evident
in the quadrangle. Areas number 19 through 23
correspond to a significant gravity high in the central
part of the quadrangle that may be related to a
subsurface body of high-density material.

Geologic features other than iron-oxide colored
areas are visible on the computer-enhanced Landsat
images. We believe that we are able to differentiate
alluvial grain sizes, define alluvial boundaries, locate
areas of possible near-surface bedrock in the alluvium,

INTERPRETATION OF LANDSAT IMAGERY OF THE McCARTHY QUADRAN GLE, ALASKA
By
Nairn R. D. Albert and Wm. Clinton Steele
1976

?magery. Thus, whereas undiscovered mineral deposits
in the McCarthy quadrangle cannot be identified solely

. by Landsat imagery, using it in combination with

geologic, geochemical, and geophysical data helps to
delineate areas with favorable potential for mineral

deposits.
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Figure 6.—Map of type B linear features (potential fault extensions) observed on Landsat imagery of the McCarthy quadrangle with mapped faults (MacKevett, 1976a).




